
Kubernetes (Kubectl) Cheat
Sheet

Credit: Interview Bit

Getting the Basics Right, Introduction to Kubernetes

Kubernetes came into the picture after the Software development teams started
switching from monolithic and microservices architecture to containerization because
of scalability and deployment issues. Containerization does solve the issue of
scalability, downtime and dependency management quite efficiently however there are
still some issues that remain unsolved.



Learn Kubernetes: Basics to Advanced Concepts

1. Kubernetes Terminology

Terms that you should be familiar with before starting off with Kubernetes are enlisted

below:

Terms Explanation

Cluster It can be thought of as a group of physical or virtual servers

where Kubernetes is installed.

Nodes There are two types of Nodes,

1. Master node is a physical or virtual server that is used

to control the Kubernetes cluster.

2. Worker node is the physical or virtual server where

workload runs in given container technology.

Pods The group of containers that shares the same network

namespaces.

Labels These are the key-value pairs defined by the user and

associated with Pods.



Master It controls plane components to provide access points for

admins to manage the cluster workloads.

Service It can be viewed as an abstraction that serves as a proxy for

a group of Pods performing a "service".

Since now we have a fair understanding of what Kubernetes is, let's now jump to the

cheat sheet.

2. Kubernetes Commands

Viewing Resource Information:

1. Nodes:

ShortCode = no

A Node is a worker machine in Kubernetes and may be either a virtual or a physical

machine, depending on the cluster. Each Node is managed by the control plane. A Node

can have multiple pods, and the Kubernetes control plane automatically handles

scheduling the pods across the Nodes in the cluster.



Commands Description

kubectl get node To list down all worker nodes.

kubectl delete node <node_name> Delete the given node in cluster.

kubectl top node Show metrics for a given node.

kubectl describe nodes | grep

ALLOCATED -A 5
Describe all the nodes in verbose.

kubectl get pods -o wide | grep

<node_name>

List all pods in the current namespace,

with more details.

kubectl get no -o wide List all the nodes with mode details.

kubectl describe no Describe the given node in verbose.

kubectl annotate node <node_name> Add an annotation for the given node.

kubectl uncordon node <node_name> Mark my-node as schedulable.

kubectl label node Add a label to given node



2. Pods

Shortcode = po

Pods are the smallest deployable units of computing that you can create and manage in

Kubernetes.

Commands Description

kubectl get po To list the available pods in the default

namespace.

kubectl describe pod <pod_name> To list the detailed description of pod.

kubectl delete pod <pod_name> To delete a pod with the name.

kubectl create pod <pod_name> To create a pod with the name.

Kubectl get pod -n <name_space> To list all the pods in a namespace.

Kubectl create pod <pod_name> -n

<name_space>

To create a pod with the name in a

namespace.

3. Namespaces

Shortcode = ns



In Kubernetes, namespaces provide a mechanism for isolating groups of resources

within a single cluster. Names of resources need to be unique within a namespace, but

not across namespaces.

Commands Description

kubectl create namespace <namespace_name> To create a namespace by the

given name.

kubectl get namespace To list the current namespace in a

cluster.

kubectl describe namespace

<namespace_name>

To display the detailed state of one

or more namespaces.

kubectl delete namespace <namespace_name> To delete a namespace.

kubectl edit namespace <namespace_name> To edit and update the definition of

a namespace.

4. Services

Shortcode = services

In Kubernetes, a Service is an abstraction which defines a logical set of Pods and a

policy by which to access them (sometimes this pattern is called a micro-service).



Commands Description

kubectl get services To list one or more services.

kubectl describe services <services_name> To list the detailed display of

services.

kubectl delete services -o wide To delete all the services.

kubectl delete service < service_name> To delete a particular service.

5. Deployments

A Deployment provides declarative updates for Pods and ReplicaSets.The typical use

case of deployments are to create a deployment to rollout a ReplicaSet, declare the new

state of the pods and rolling back to an earlier deployment revision.

Commands Description

kubectl create deployment <deployment_name> To create a new

deployment.

kubectl get deployment To list one or more

deployments.



kubectl describe deployment <deployment_name> To list a detailed state of

one or more deployments.

kubectl delete deployment<deployment_name> To delete a deployment.

6. DaemonSets

A DaemonSet ensures that all (or some) Nodes run a copy of a Pod. As nodes are added

to the cluster, Pods are added to them. As nodes are removed from the cluster, those

Pods are garbage collected. Deleting a DaemonSet will clean up the Pods it created.

Command Description

kubectl get ds To list out all the daemon sets.

kubectl get ds -all-namespaces To list out the daemon sets in a

namespace.

kubectl describe ds

[daemonset_name][namespace_name]

To list out the detailed information

for a daemon set inside a

namespace.

7. Events

Kubernetes events allow us to paint a performative picture of the clusters.



Commands Description

kubectl get events To list down the recent events for

all the resources in the system.

kubectl get events --field-selector

involvedObject.kind != Pod

To list down all the events except

the pod events.

kubectl get events --field-selector type !=

Normal

To filter out normal events from a

list of events.

8. Logs

Logs are useful when debugging problems and monitoring cluster activity. They help to

understand what is happening inside the application.

Commands Description

kubectl logs <pod_name> To display the logs for a Pod with the

given name.

kubectl logs --since=1h <pod_name> To display the logs of last 1 hour for

the pod with the given name.



kubectl logs --tail-20 <pod_name> To display the most recent 20 lines

of logs.

kubectl logs -c <container_name>

<pod_name>
To display the logs for a container in

a pod with the given names.

kubectl logs <pod_name> pod.log To save the logs into a file named as

pod.log.

9. ReplicaSets

A ReplicaSet's purpose is to maintain a stable set of replica Pods running at any given

time. As such, it is often used to guarantee the availability of a specified number of

identical Pods.

Commands Description

kubectl get replicasets
To List down the ReplicaSets.

kubectl describe replicasets

<replicaset_name>

To list down the detailed state of

one or more ReplicaSets.

kubectl scale --replace=[x] To scale a replica set.

10. Service Accounts



A service account provides an identity for processes that run in a Pod.

Commands Description

kubectl get serviceaccounts To List Service Accounts.

kubectl describe serviceaccounts To list the detailed state of one or more

service accounts.

kubectl replace serviceaccounts To replace a service account.

kubectl delete serviceaccounts <name> To delete a service account.

3. Changing Resource Attributes

Taints: They ensure that pods are not placed on inappropriate nodes.

Command Description

kubectl taint <node_name><taint_name> This is used to update the taints on one

or more nodes.

Labels: They are used to identify pods.

Command Description



kubectl label pod <pod_name> Add or update the label of a pod

4. For Cluster Introspection

Commands Description

kubectl version To get the information related to the

version.

kubectl cluster-info To get the information related to the

cluster.

kubectl config g view To get the configuration details.

kubectl describe node <node_name> To get the information about a node.

5. Interacting with Deployments and Services

Commands Description

kubectl logs deploy/my-deployment Dump Pod logs for a Deployment

(single-container case).

kubectl logs deploy/my-deployment

-c my-contain

dump Pod logs for a Deployment

(multi-container case).



kubectl port-forward svc/my-service

5000

To listen on local port 5000 and forward to

port 5000 on Service backend.

kubectl port-forward

deploy/my-deployment 5000:6000

To listen on local port 5000 and forward to

port 6000 on a Pod created by

<my-deployment>.

kubectl exec deploy/my-deployment

-- ls

To run command in first Pod and first

container in Deployment (single- or

multi-container cases).

6. Copy files and directories to and from containers

Commands Description

kubectl cp /tmp/foo_dir

my-pod:/tmp/bar_dir

Copy /tmp/foo_dir local directory to

/tmp/bar_dir in a remote pod in the

current namespace.

kubectl cp /tmp/foo my-pod:/tmp/bar -c

my-container

Copy /tmp/foo local file to /tmp/bar in

a remote pod in a specific container.

kubectl cp /tmp/foo

my-namespace/my-pod:/tmp/bar

Copy /tmp/foo local file to /tmp/bar in

a remote pod in a specific container.



kubectl cp

my-namespace/my-pod:/tmp/foo /tmp/bar

Copy /tmp/foo from a remote pod to

/tmp/bar locally.

Conclusion

Kubernetes is a portable, extensible, open-source platform for managing

containerization workloads and services that facilitates both declarative configuration

and automation, letting you run distributed systems resiliently with scaling and failover

for your application.

Knowing Kubernetes is a must-have skill whether you are a developer, a tester or a

DevOps engineer, I hope this article has helped you out. If you are preparing for your

interviews as a fresher or if you are an experienced person looking to switch jobs, then

InterviewBit is the right place to start. It has several tracks including Programming,

System Design, Puzzles and Scripting along with company-specific preparation guides

and fast track courses.


