
Study Guide

Docker Cheat
Sheet (2016)

Contents
Prerequisites� 1

Linux� 1

MacOS� 1

Installation� 1

Linux� 1

Mac OS X� 1

Containers� 2

Lifecycle� 2

Starting and Stopping� 2

Information on Docker Containers, Processes and Performance� 3

Import / Export (Backup / Restore)� 3

Executing Commands� 3

Images� 3

Lifecycle of Containers (Create, Run, Build, Commit)� 3

Info� 4

Cleaning up� 4

Images Created by Redirection� 4

Import/Export Container� 4

Private and Public Registries/Repositories� 5

Running a Local Registry� 5

Dockerfile� 5

Layers� 6

Links Between Containers� 6

Volumes� 7

Docker Volume Lifecycle� 7

Volume Information� 7

Exposing Ports� 7

Security Considerations� 8

Security Tips� 8

Docker Cheat Sheet (2016)	 Linux Academy

- 1 -

Prerequisites

Linux
•	 The 3.10.x kernel or newer

MacOS
•	 10.8 “Mountain Lion” or newer

Installation

Linux
Install script provided by Docker:

curl -sSL https•//get.docker.com/ | sh

If unwilling to run a random shell script, please see the installation instructions for your distribution.

Mac OS X
Download and install Docker Toolbox. If this fails, see the installation instructions.

If you have an existing Docker Toolbox, you may think you can upgrade Docker Machine binaries directly
(either from URL or docker-machine upgrade default). This does not work. Your Docker Machine
will be 1.10.3, while Docker itself remains at its previous version.

Instead, use the Docker Toolbox DMG file to upgrade; this takes care of all the binaries at once.

Once you’ve installed Docker Toolbox, install a VM with Docker Machine using the VirtualBox provider:

docker-machine create --driver=virtualbox default
docker-machine ls
eval "$(docker-machine env default)"

Then start up a container:

docker run hello-world

That’s it; you have a running Docker container.

Docker Cheat Sheet (2016)	 Linux Academy

- 2 -

Containers
Your basic isolated Docker process. Containers are to virtual machines, as threads are to processes. Or you
can think of them as larger-than-life chroot environments.

Lifecycle
•	 docker create • Creates a container but does not start it

•	 docker rename • Allows the container to be renamed

•	 docker run • Creates and starts a container in one operation

•	 docker rm • Deletes a container

•	 docker update • Updates a container’s resource limits

•	 docker run --rm • Removes container when stopped

•	 docker run -v $HOSTDIR•$DOCKERDIR • Maps a directory on the host to the Docker
container; see also• Volumes

•	 docker rm -v • Removes volumes associated with container

•	 docker run --log-driver=syslog • Runs Docker with custom log driver

Starting and Stopping
•	 docker start • Starts a container, so it is running

•	 docker stop • Stops a running container

•	 docker restart • Stops and starts a container

•	 docker pause • Pauses a running container, “freezing” it in place

•	 docker unpause • Unpauses a running container

•	 docker wait • Blocks until running container stops

•	 docker kill • Sends a SIGKILL to a running container

•	 docker attach • Connects to a running container

If you want to integrate a container with a host process manager, start the daemon with -r=false then use
docker start -a.

If you want to expose container ports through the host, see the exposing ports section.

Docker Cheat Sheet (2016)	 Linux Academy

- 3 -

Information on Docker Containers, Processes and
Performance

•	 docker ps • Shows running containers

•	 docker logs • Gets logs from container; you can use a custom log driver, but logs are only
available for json-file and journald in 1.10

•	 docker inspect • Looks at all the info on a container (including IP address)

•	 docker events • Gets events from container

•	 docker port • Shows public facing port of container

•	 docker top • Shows running processes in container

•	 docker stats • Shows containers’ resource usage statistics

•	 docker diff • Shows changed files in the container’s filesystem

•	 docker ps -a • Shows running and stopped containers

•	 docker stats --all • Shows a running list of containers

Import / Export (Backup / Restore)
•	 docker cp • Copies files or folders between a container and the local filesystem

•	 docker export • Turns container filesystem into tarball archive stream to STDOUT

Executing Commands
•	 docker exec • Executes a command in container

To enter a running container, attach a new shell process to a running container called foo, use:

docker exec -it foo /bin/bash.

Images
Images are templates that Docker containers are based on. They are the foundational layer from which your
container is launched, and your changes then become independent from it (as another layer).

Lifecycle of Containers (Create, Run, Build, Commit)
•	 docker images • Shows all images

•	 docker import • Creates an image from a tarball

Docker Cheat Sheet (2016)	 Linux Academy

- 4 -

•	 docker build • Creates image from Dockerfile

•	 docker commit • Creates image from a container, pausing it temporarily if it is running

•	 docker rmi • Removes an image

•	 docker load • Loads an image from a tar archive as STDIN, including images and tags (as of
0.7)

•	 docker save • Saves an image to a tar archive stream to STDOUT with all parent layers, tags
and versions (as of 0.7)

Info
•	 docker history • Shows history of image

•	 docker tag • Tags an image to a name (local or registry)

Cleaning up
While you can use the docker rmi command to remove specific images, there’s a tool called docker-
gci that will clean up images that are no longer used by any containers in a safe manner.

Images Created by Redirection
Load an image from file:

docker load < my_image.tar.gz

Save an existing image:

docker save my_image•my_tag > my_image.tar.gz

Import/Export Container
Import a container as an image from file:

cat my_container.tar.gz | docker import - my_image•my_tag

Export an existing container:

docker export my_container > my_container.tar.gz

Differences between loading a saved image and importing an exported container as an image:

Docker Cheat Sheet (2016)	 Linux Academy

- 5 -

•	 Loading an image using the load command creates a new image, including its history.

•	 Importing a container as an image using the import command creates a new image, excluding the
history which results in a smaller image size compared to loading an image.

Private and Public Registries/Repositories
A repository is a hosted collection of tagged images that, together, create the file system for a container.

A registry is a host -- a server that stores repositories and provides an HTTP API for managing the uploading
and downloading of repositories.

Docker.com hosts its own index to a central registry (the Docker Hub) which contains a large number of
repositories.

•	 docker login • Logs into a registry

•	 docker logout • Logs out from a registry

•	 docker search • Searches registry for image

•	 docker pull • Pulls an image from registry to local machine

•	 docker push • Pushes an image to the registry from local machine

Running a Local Registry
You can run a local registry by using the docker distribution project and looking at the local deployment
instructions.

Dockerfile
The configuration file. Sets up a Docker container when you run docker build on it.

•	 Sections/Directives in a Dockerfile:

»» .dockerignore • Files and directories to be ignored during the build -t of the
Dockerfile

»» FROM • Sets the base image for subsequent instructions

»» MAINTAINER • Sets the Author field of the generated images

»» RUN • Executes any commands in a new layer on top of the current image and commits the
results

»» CMD • Provides defaults for an executing container

»» EXPOSE • Informs Docker that the container listens on the specified network ports at

Docker Cheat Sheet (2016)	 Linux Academy

- 6 -

runtime; does not make ports accessible

»» ENV • Sets environment variables

»» ADD • Copies new files, directories or remote file to container; invalidates caches; avoid ADD
and use COPY instead

»» COPY • Copies new files or directories to container

»» ENTRYPOINT • Configures a container that will run as an executable

»» VOLUME • Creates a mount point for externally-mounted volumes or other containers

»» USER • Sets the username for following RUN/CMD/ENTRYPOINT commands

»» WORKDIR • Sets the working directory

»» ARG • Defines a build-time variable

»» ONBUILD • Adds a trigger instruction when the image is used as the base for another build

»» STOPSIGNAL • Sets the system call signal that will be sent to the container to exit

»» LABEL • Apply key/value metadata to your images, containers, or daemons

Layers
The versioned filesystem in Docker is based on layers. They’re like Git commits or changesets for filesystems.

Links Between Containers
Links are how Docker containers talk to each other through TCP/IP ports. As of 0.11, you can resolve links
by hostname.

If you want containers only to communicate with each other through links, start the docker daemon with
-icc=false to disable interprocess communication.

If you have a container with the name CONTAINER (specified by docker run --name CONTAINER)
and in the Dockerfile, it has an exposed port:

EXPOSE 8080

Then if we create another container called LINKED:

docker run -d --link CONTAINER•ALIAS --name LINKED user/example

The exposed ports and aliases of CONTAINER will show up in LINKED with the following environment
variables:

Docker Cheat Sheet (2016)	 Linux Academy

- 7 -

$ALIAS_PORT_8080_TCP_PORT
$ALIAS_PORT_8080_TCP_ADDR

And you can connect to it that way.

To delete links, use docker rm --link.

Volumes
Docker volumes are free-floating filesystems. They don’t have to be connected to a particular container.
You could use volumes mounted from data-only containers for portability.

Docker Volume Lifecycle
•	 docker volume create

•	 docker volume rm

Volume Information
•	 docker volume ls

•	 docker volume inspect

Volumes are useful in situations where you can’t use links (which are TCP/IP only). For instance, if you
need to have two Docker instances communicate by leaving items on the filesystem.

You can mount them in several Docker containers at once, using docker run --volumes-from.

Because volumes are isolated filesystems, they are often used to store states from computations between
transient containers. That is, you can have a stateless and transient container run from a recipe/playbook/
manifest, blow it away, and then have a second instance of the transient container pick up from where the
last one left off.

Exposing Ports
This is done by mapping the container port to the host port (only using localhost interface, for example)
using -p•

docker run -p 127.0.0.1•$HOSTPORT•$CONTAINERPORT --name CONTAINER -t
someimage

You can tell Docker that the container listens on the specified network ports at runtime by using EXPOSE:

EXPOSE <CONTAINERPORT>

Docker Cheat Sheet (2016)	 Linux Academy

- 8 -

EXPOSE does not expose the port itself, only -p will do that. To expose the container’s port on your
localhost’s port, see above, and add the appropriate ports to your firewall ruleset, as needed.

If you forget what you mapped the port to on the host container, use docker port to show it•

docker port CONTAINER $CONTAINERPORT

Security Considerations
Docker runs as root. If you are in the Docker group, you effectively have root access. If you expose the
Docker Unix socket to a container, you are giving the container root access to the host.

Docker should not be your only defense. You should secure and harden it.

Security Tips
For the greatest security, you want to run Docker inside a virtual machine. Then, run with AppArmor/
seccomp/SELinux/grsec, etc. to limit the container permissions. See the Docker 1.10 security features
for more details.

Docker image IDs are sensitive information, and should not be exposed to the outside world. Treat them
like passwords.

Since Docker 1.11 you can easily limit the number of active processes running inside a container to prevent
fork bombs. This requires Linux kernel 4.3 or higher with CGROUP_PIDS=y in the kernel configuration.

docker run --pids-limit=64

Also available since Docker 1.11 is the ability to prevent processes to gain new privileges. This feature is
in the Linux kernel since version 3.5.

docker run --security-opt=no-new-privileges

Turn off interprocess communication:

docker -d --icc=false --iptables

Set the container to be read-only:

docker run --read-only

Docker Cheat Sheet (2016)	 Linux Academy

- 9 -

Verify images with a hashsum:

docker pull debian@sha256•a25306f3850e1bd44541976aa7b5fd0a29be

Set volumes to be read only:

docker run -v $(pwd)/secrets•/secrets•ro debian

Set memory and CPU sharing:

docker -c 512 -mem 512m

Define and run a user in your Dockerfile, so you don’t run as root inside the container:

RUN groupadd -r user && useradd -r -g user user

	Prerequisites
	Linux
	MacOS

	Installation
	Linux
	Mac OS X
	Containers
	Lifecycle
	Starting and Stopping
	Information on Docker Containers, Processes and Performance
	Import / Export (Backup / Restore)
	Executing Commands
	Images
	Lifecycle of Containers (Create, Run, Build, Commit)
	Info
	Cleaning up
	Images Created by Redirection
	Import/Export Container
	Private and Public Registries/Repositories
	Running a Local Registry
	Dockerfile
	Layers
	Links Between Containers
	Volumes
	Docker Volume Lifecycle
	Volume Information
	Exposing Ports

	Security Considerations
	Security Tips

